ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ENERGYMETR

Описание программы ТСКЯ.00144-01 13 01

АННОТАЦИЯ

В данном документе приведено описание программного обеспечения ENERGYMETR.

В разделе «Общие сведения» приведено название программы, указано программное обеспечение, необходимое для работы программы, указаны языки программирования, на которых написана программа.

В разделе «Функциональное назначение» указаны классы решаемых задач и назначение программы.

В разделе «Описание логической структуры» указан алгоритм работы программы, используемые методы, структура программы и связь с другими программными модулями.

В разделе «Используемые технические средства» указана аппаратная платформа для работы программы.

В разделе «Вызов и загрузка» указаны способы вызова программы.

В разделе «Входные и выходные данные» указан характер входных и выходных данных.

Оформление программного документа «Описание программы» произведено по требованиям ЕСПД (ГОСТ 19.101-77¹⁾, ГОСТ 19.103-77²⁾, ГОСТ 19.104-78³⁾, ГОСТ 19.105-78⁴⁾, ГОСТ 19.106-78⁵⁾, ГОСТ 19.402-78⁶⁾, ГОСТ 19.604-78⁷⁾).

¹⁾ ГОСТ 19.101-77 ЕСПД. Виды программ и программных документов

²⁾ ГОСТ 19.103-77 ЕСПД. Обозначение программ и программных документов

³⁾ ГОСТ 19.104-78 ЕСПД. Основные надписи

⁴⁾ ГОСТ 19.105-78 ЕСПД. Общие требования к программным документам

⁵⁾ ГОСТ 19.106-78 ЕСПД. Общие требования к программным документам, выполненным печатным способом

⁶⁾ ГОСТ 19.402-78 ЕСПД. Описание программы.

⁷⁾ ГОСТ 19.604-78 ЕСПД. Правила внесения изменений в программные документы, выполненные печатным способом

СОДЕРЖАНИЕ

1.	ОБЩИЕ СВЕДЕНИЯ	. 4
2.	ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ	. 4
3.	ОПИСАНИЕ ЛОГИЧЕСКОЙ СТРУКТУРЫ	. 4
4.	ИСПОЛЬЗУЕМЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА	. 10
5.	ВЫЗОВ И ЗАГРУЗКА	. 10
6.	ВХОЛНЫЕ И ВЫХОЛНЫЕ ЛАННЫЕ	. 10

1. ОБЩИЕ СВЕДЕНИЯ

В данном документе описана программа для платы ENERGYMETR. Программа написана на языке С стандарта 99. Сборка производится при помощи программы eclipse.

2. ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕ

Программа предназначена для загрузки на плату EnergyMetr_demo. Программа с помощью дисплея визуализирует характеристики сети, потребляемую мощность, потребленную энергию, текущую дату и время, состояния установленных на плату тамперов.

3. ОПИСАНИЕ ЛОГИЧЕСКОЙ СТРУКТУРЫ

В main.c, в функции main происходит вся настройка периферийных интерфейсов и запускается главный цикл программы. Настраиваются прерывания для обработки adcui и для отслеживания таймеров. Настраивается прерывание SysTick для отслеживания внутреннего времени работы программы.

Обработка нажатий на кнопки происходит в файле drv_button.c. После настроек периферийных выводов, программа циклически опрашивает их состояние. Для кнопок настраиваются события для событий: нажатия, долгого нажатия, очень долгого нажатия, клика и отпускания кнопки.

Обработка второстепенных напряжений на плате происходит в файле drv_adc.c. Инициализируется периферийный модуль аналого-цифрового преобразователя (АЦП) и обрабатывает напряжения: 5 В, BatVoltage, BatVoltageInternal, Vref и напряжение температурного датчика с последующим преобразованием его в температуру.

В файле drv_clock.c настраивается встроенный в микросхему блок RTC. Настраиваются условия срабатывания тамперов. Состояние о срабатывании тамперов хранится в оперативной памяти батарейного домена.

Для измерения токов, напряжения, мощности, накопленной энергии в файле drv_adcui.c настраивается внутренний блок adcui, настраиваются прерывания и dma. В прерывании от каждого канала ADCUI происходит обработка и вычисление метрологических показателей. Так же в файле drv_adcui.c содержатся алгоритмы калибровки каналов ADCUI.

Для отображения информации на экране, установленном на плату EnergyMetr, используются файлы drv_display.c, drv_displayCalibrate.c и GF_library.c. В файле drv_display.c настраивается контроллер дисплея, настраиваются экраны отображения и логика их работы. В файле drv_displayCalibrate.c настраиваются экраны для калибровки ADCUI. В файле GF_library.c содержатся функции для отрисовки графической информации в буфер дисплея.

В файле drv_flash.c настраивается микросхема памяти MLDR220, установленная на плату. В данную микросхему записываются данные калибровки ADCUI.

Для управления светодиодами используется файл drv_led.c. В нем настраиваются периферийные выводы микросхемы и обрабатывается их состояние.

На плате используются две кнопки для навигации по меню. Меню расписано в таблице 1. По кратковременному нажатию на верхнюю кнопку происходит циклическая смена основных экранов. По кратковременному нажатию на нижнюю клавишу происходит вход в подменю в случае наличия подменю у данного экрана. Долгое удержание верхней клавиши сбрасывает состояние тамперов на закрытое.

Таблица 1 – Меню для навигации

No॒	Название	Описание
1	Базовый экран	Базовый экран содержит информацию о напряжении, токе, энергии, для каждой фазы по отдельности
2	Экран фазы А	Данные экраны содержат подробную информацию по каждой фазе: ток, напряжения, текущая суммарная мощность, мощность
3	Экран фазы В	активная положительная, мощность активная отрицательная, мощность реактивная положительная, мощность реактивная отрицательная, энергия суммарная, энергия активная
4	Экран фазы С	положительная, энергия активная отрицательная, энергия реактивная положительная, энергия реактивная отрицательная

No॒	Название	Описание
5	Экран тамперов	Данный экран содержит информацию о состоянии трех тамперов, и времени их срабатывания. В случае сброса устанавливается время и дата 00:00 01.01.2000
6	Экран часов	Данный экран содержит информацию о калибровке батарейного домена: MDR_BKP->RTC, MDR_BKP->TMPCAL3 и график температурных констант. У данного экрана есть подменю настройки текущего времени
6.1	Экран настройки часов	С помощью данного экрана можно настроить текущую дату и текущее время. С помощью нижней клавиши переключается: день, месяц, год, час, минуты, секунды. Нажатие на верхнюю клавишу циклически увеличивает выбранное значение
7	Экран второстепенных напряжений	Данный экран содержит информацию о напряжении 5 В, напряжении батареи, напряжении батареи внутренней цепи, опорном напряжении АЦП, температуре встроенного датчика температуры и токе через нулевой канал
8	Экран калибровки	Данный экран содержит информацию о двух младших байтах регистров калибровки: FxAC, CALx, xCTR, FxWC, FxVS. У данного экрана есть подменю для калибровки ADCUI. Долгое удержание нижней кнопки сбрасывает записанные значения регистров
8.1	Экран калибровки нижней точки напряжения	Данный экран содержит информацию о значении регистров FxVRMS для трех каналов, сконвертированное значение напряжения, значения регистров FxAC для трех каналов. Долгое удержание нижней кнопки начнет накопление данных по нижней точке напряжения
8.2	Экран калибровки верхней точки напряжения	Данный экран содержит информацию о значении регистров FxVRMS для трех каналов, сконвертированное значение напряжения, значения регистров CCALх для трех каналов. Долгое удержание нижней кнопки начнет накопление данных по верхней точке напряжения, а затем выполнит калибровку
8.3	Экран калибровки нижней точки тока	Данный экран содержит информацию о значении регистров FxIRMS для трех каналов, сконвертированное значение тока, значения регистров FxCTR для трех каналов. Долгое удержание нижней кнопки начнет накопление данных по нижней точке тока
8.4	Экран калибровки верхней точки тока	Данный экран содержит информацию о значении регистров FxIRMS для трех каналов, сконвертированное значение напряжения, значения регистров CCALх для трех каналов. Долгое удержание нижней кнопки начнет накопление данных по верхней точке тока, а затем выполнит калибровку
8.5	Экран калибровки фазы	Данный экран содержит информацию о значении накопленного количества энергии, активной и реактивной, значения регистров FOCTR для трех каналов. Долгое удержание нижней кнопки начнет накопление данных и калибровку фазы
8.6	Экран калибровки активной мощности нижней точки	Данный экран содержит информацию о значении регистров активной мощности, сконвертированное значение активной мощности, значения регистров FxWC для трех каналов. Долгое удержание нижней кнопки начнет накопление данных по нижней точке активной мощности

No	Название	Описание
8.7	Экран калибровки	Данный экран содержит информацию о значении регистров
	активной мощности	активной мощности, сконвертированное значение активной
	верхней точки	мощности, значения регистров FxWC для трех каналов. Долгое
		удержание нижней кнопки начнет накопление данных по верхней
		точке активной мощности, а после произведет калибровку
		измерения активной мощности
8.8	Экран калибровки	Данный экран содержит информацию о значении регистров
	активной мощности	реактивной мощности, сконвертированное значение реактивной
	нижней точки	мощности, значения регистров FxVC для трех каналов. Долгое
		удержание нижней кнопки начнет накопление данных по нижней
		точке реактивной мощности
8.9	Экран калибровки	Данный экран содержит информацию о значении регистров
	активной мощности	реактивной мощности, сконвертированное значение реактивной
	верхней точки	мощности, значения регистров FxVC для трех каналов. Долгое
		удержание нижней кнопки начнет накопление данных по верхней
		точке реактивной мощности, а после произведет калибровку
		измерения реактивной мощности

Для калибровки ADCUI необходимо выполнить следующие действия:

- сбросить текущую калибровку;
- выполнить калибровку напряжения;
- выполнить калибровку тока;
- выполнить калибровку фазы;
- выполнить калибровку активной мощности;
- выполнить калибровку реактивной мощности.

Выполнять калибровки в строгом порядке.

Для сброса калибровки необходимо:

- с помощью верхней кнопки установить экран калибровки (экран № 8);
- долгим нажатием на нижнюю клавишу сбросить текущее значение калибровки.

Для калибровки напряжения необходимо:

- установить экран калибровки напряжения нижней точки (экран № 8.1);
- подать на три канала переменное напряжение 190 В;
- долгим нажатием на нижнюю клавишу записать значения напряжения в нижней точке. При записи загорается красный светодиод ошибки;

- установить экран калибровки напряжения верхней точки (экран № 8.2);
- подать на три канала переменное напряжение 240 В;
- долгим нажатием на нижнюю клавишу записать значения напряжения в верхней точке. При записи загорается красный светодиод ошибки;
- убедиться, что текущая калибровка удовлетворяет необходимым параметрам.

Для калибровки тока необходимо:

- установить экран калибровки тока нижней точки (экран № 8.3);
- подать на три канала переменный ток 25 мА;
- долгим нажатием на нижнюю клавишу записать значения тока в нижней точке. При записи загорается красный светодиод ошибки;
 - установить экран калибровки тока верхней точки (экран № 8.4);
 - подать на три канала переменный ток 2,5 А;
- долгим нажатием на нижнюю клавишу записать значения тока в верхней точке. при записи загорается красный светодиод ошибки;
- убедиться, что текущая калибровка удовлетворяет необходимым параметрам.

Для калибровки фазы необходимо:

- установить экран калибровки фазы (экран № 8.5);
- подать на три канала переменный ток 2,5 A и напряжение 220 B;
- долгим нажатием на нижнюю клавишу выполнить калибровку фазы. при записи загорается красный светодиод ошибки;
- убедиться, что текущая калибровка удовлетворяет необходимым параметрам.

Для калибровки активной мощности необходимо:

- установить экран калибровки тока нижней точки (экран № 8.6);
- подать на три канала переменный ток 25 мА при напряжении 190 В и угле 0°;

- долгим нажатием на нижнюю клавишу записать значения мощности в нижней точке. При записи загорается красный светодиод ошибки;
 - установить экран калибровки тока верхней точки (экран № 8.7);
 - подать на три канала переменный ток 2,5 A при напряжении 240 B и угле 0°;
- долгим нажатием на нижнюю клавишу записать значения мощности в верхней точке. При записи загорается красный светодиод ошибки;
- убедиться, что текущая калибровка удовлетворяет необходимым параметрам;

Для калибровки реактивной мощности необходимо:

- установить экран калибровки тока нижней точки (экран № 8.8);
- подать на три канала переменный ток 25 мА при напряжении 190 В и угле 90°;
- долгим нажатием на нижнюю клавишу записать значения мощности в нижней точке. При записи загорается красный светодиод ошибки;
 - установить экран калибровки тока верхней точки (экран № 8.9);
 - подать на три канала переменный ток 2,5 A при напряжении 240 B и угле 90°;
- долгим нажатием на нижнюю клавишу записать значения мощности в верхней точке. При записи загорается красный светодиод ошибки;
- убедиться, что текущая калибровка удовлетворяет необходимым параметрам.

4. ИСПОЛЬЗУЕМЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА

Программа предназначена для работы на аппаратном обеспечении EnergyMetr_Demo.

5. ВЫЗОВ И ЗАГРУЗКА

Программа загружается автоматически после подачи питания на микроконтроллер.

6. ВХОДНЫЕ И ВЫХОДНЫЕ ДАННЫЕ

Входными данными для модуля является напряжение и ток.

Выходными данными для модуля являются данные отображаемые на экране.